YOUR CART
- No products in the cart.
Subtotal:
$0.00
BEST SELLING PRODUCTS
Hovgaard Aggerholm posted an update 5 days, 4 hours ago
Atherosclerotic cardiovascular disease became one of the major causes of morbidity and mortality worldwide. As a sulfated polysaccharide with anti-inflammatory and hypolipidemic activities, fucoidan can induce autophagy. We show here that fucoidan reduces lipid accumulation in foam cells, which is one of the causes of atherosclerosis. Further studies show that fucoidan promotes autophagy showed by the expression of p62/SQSTM1 and microtubule-associated protein light chain 3 (LC3) II, which can be blocked by autophagy inhibitors 3-MA and bafilomycin A1. In addition, the expression of transcription factor EB (TFEB), master regulator of autophagy and lysosome function, is upregulated after the treatment with fucoidan. Moreover, the knockout of TFEB with small interfering RNA suppressed the effect of fucoidan. Together, fucoidan reduces lipid accumulation in foam cells by enhancing autophagy through the upregulation of TFEB. In view of the role of foam cells in atherosclerosis, fucoidan can be valuable for the treatment of atherosclerosis.The inferior tendon healing after surgery is inextricably linked to the surgical suture. Poor load transfer along the suture often results in a high tendon re-tear rate. Besides, the severe inflammation and infection induced by sutures even cause a second surgery. Herein, to alleviate the above-mentioned issues, a multifunctional suture was fabricated by decorating chitosan/gelatin-tannic acid (CS/GE-TA) on the porous tape suture. The porous tape suture ensured the required mechanical properties and sufficient space for tissue integration. Compared to the pristine suture, the CS/GE-TA decorated suture (TA100) presented a 332% increase in pull-out force from the tendon, indicating potentially decreased re-tear rates. Meanwhile, TA100 showed superior anti-inflammatory and antibacterial performances. In vivo experiments further proved that TA100 could not only reduce inflammatory action but also facilitate collagen deposition and blood vessel formation. These results indicate that the multifunctional sutures are promising candidates for accelerating tendon healing.Self-healing hydrogels with pH-responsiveness could protect loaded drugs from being destroyed till it arrives to the target. The pectin-based hydrogel is a candidate due to the health benefit, anti-inflammation, antineoplastic activity, nontoxicity, and biospecific degradation, et al. However, the abundant existence of water-soluble branched heteropolysaccharide chains influenced its performance resulting in limitation of the potential. In the present study, we prepared a series of self-healing pectin/chitosan hydrogels via the Diels-Alder reaction. Moreover, pectin/chitosan composite hydrogel was prepared as a contrast. By comparison, it can be seen that the Diels-Alder reaction greatly improved the cross-linking density of hydrogels. The self-healing experiments showed excellent self-healing performance. In different swelling mediums, significant transformation in the swelling ratio was shown, indicating well-swelling property, pH- and thermo-responsiveness. The drug loading and release studies presented high loading efficiency and sustained release performance. The cytotoxicity assay that showed a high cell proliferation ratio manifested great cytocompatibility.Polylactide (PLA) nanocomposites with spray-and freeze-dried cellulose nanocrystals (i.e., SCNC and FCNC) were prepared through solution casting using four different solvents tetrahydrofuran (THF), chloroform (CHL), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO). Small amplitude oscillatory shear rheological analysis was extensively employed to explore the CNC dispersion quality in PLA. Overall, the rheological properties differences of PLA/SCNC and PLA/FCNC nanocomposites were not very significant. Moreover, the use of THF and CHL did not lead to a proper dispersion of CNCs in PLA due to their low dielectric constants. On the other hand, while the use of DMF was effective on the enhancement of CNC dispersion, DMSO could more dramatically lead to such enhancement due to its higher dielectric constant. The percolation threshold in PLA/SCNC nanocomposites prepared with DMF and DMSO was predicted around 1.52 and 0.12 wt% CNC, respectively. The crystallization behavior of PLA/nanocomposites prepared with DMF and DMSO were also explored.Recently, flexible and wearable sensors assembled from conductive hydrogels have attracted widespread attention. However, it is still a great challenge to make hydrogels with sufficient mechanical properties, self-adhesiveness and strain sensitivity. Here, a strong, tough, and self-adhesive hydrogel is successfully fabricated by a one-pot method, which introducing chitosan and 2-acrylamido-2-methylpropane sulfonic acid into the polyacrylamide network. The hydrogels exhibited adhesion (the peel strength reaches 798 N/m), mechanical property (The breaking strength and strain can reach 111 kPa and 2839%) and electrical conductivity (conductivity up to 0.0848 S/cm), which are suitable for wearable epidermal sensors. Besides, the hydrogels also possessed transparency. TG003 solubility dmso Therefore, this work would provide a novel insight on the fabrication of multi-functional self-adhesive hydrogel sensors.Composite dressing composed of Rhizochitosan and Regenplex™ to promote wound healing were assessed. Rhizochitosan was fabricated by deacetylation of Rhizochitin, which obtained by simply depigmenting sporangium-free mycelial mattress produced from Rhizopus stolonifer F6. Physicochemical characterizations of Rhizochitosan demonstrated that it contained 13.5% chitosan with a water-absorption ability of 35-fold dry weight and exhibiting hydrogel nature after hydration. In a wound-healing study on SD rats with full-thickness injury, the composite dressing had a better healing effect than those for each individual components and control group and wound even healed as functional tissue instead of scar tissue. The underlying mechanism of the composite beneficial to wound remodeling is likely attributable to a more reduction level of matrix metalloproteinase (MMP)-9 expression in early stage and a higher MMP-2 expression level in a later stage of healing process. Conclusively, the composite dressing demonstrated to be highly beneficial to the healing of full-thickness injury wound.