YOUR CART
- No products in the cart.
Subtotal:
$0.00
BEST SELLING PRODUCTS
Morin Grady posted an update 13 hours, 20 minutes ago
The release of bioelements from edible mushrooms (Agaricus bisporus, Cantharellus cibarius, and Imleria badia) was examined using in vitro simulated gastrointestinal digestion to assess their health-promoting potential. The following samples were tested fresh, frozen, dried in a food dryer, dried in the sun, and lyophilized. The samples were incubated in gastric juice (pepsin, NaCl, HCl) and in intestinal juice (NaHCO
, pancreatin, bile salts) with the aim of verifying the bioaccessibility of the bioelements and the digestibility of mushrooms. Four bioelements that are essential for the human body were studied Mg, Zn, Cu, and Fe.
It was found that Mg was extracted in the highest amounts from the sun-dried A. bisporus (1.620 g kg
d.w.). In the case of microelements, the lyophilized fruiting bodies of I. badia released Zn in the highest quantities (0.180 g kg
d.w.). Lyophilization and sun-drying methods were more advantageous than other methods. Fresh material was a more valuable source of bioelements than frozen material.
Our results showed that edible mushrooms have a high content of bioelements that are easily bioaccessible, which indicates their health-promoting properties. © 2020 Society of Chemical Industry.
Our results showed that edible mushrooms have a high content of bioelements that are easily bioaccessible, which indicates their health-promoting properties. © 2020 Society of Chemical Industry.The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint-like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established. Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co-expression network associated with development of the blade/sheath boundary. Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves. This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.Biological nitrification inhibition (BNI) of Brachiaria humidicola has been attributed to nitrification-inhibiting fusicoccanes, most prominently 3-epi-brachialactone. However, its release mechanism from B. humidicola roots remains elusive. Two hydroponic experiments were performed to investigate the role of rhizosphere pH and nutritional N form in regulating 3-epi-brachialactone release by B. humidicola and verify the underlying release pathway. Low rhizosphere pH and NH4+ nutrition promoted 3-epi-brachialactone exudation. However, the substitution of NH4+ by K+ revealed that the NH4+ effect was not founded in a direct physiological response to the N form but was related to the cation-anion balance during nutrient uptake. Release of 3-epi-brachialactone correlated with the transmembrane proton gradient ΔpH and NH4+ uptake (R2 = 0.92 for high ~6.8 and R2 = 0.84 for low ~4.2 trap solution pH). This corroborated the release of 3-epi-brachialactone through secondary transport, with the proton motive force (ΔP) defining transport rates across the plasma membrane. It was concluded that 3-epi-brachialactone release cannot be conceptualized as a regulated response to soil pH or NH4+ availability, but merely as the result of associated changes in ΔP.Although often not collected specifically for the purposes of conservation, herbarium specimens offer sufficient information to reconstruct parameters that are needed to designate a species as ‘at-risk’ of extinction. While such designations should prompt quick and efficient legal action towards species recovery, such action often lags far behind and is mired in bureaucratic procedure. The increase in online digitization of natural history collections has now led to a surge in the number new studies on the uses of machine learning. These repositories of species occurrences are now equipped with advances that allow for the identification of rare species. The increase in attention devoted to estimating the scope and severity of the threats that lead to the decline of such species will increase our ability to mitigate these threats and reverse the declines, overcoming a current barrier to the recovery of many threatened plant species. Apabetalone nmr Thus far, collected specimens have been used to fill gaps in systematics, range extent, and past genetic diversity. We find that they also offer material with which it is possible to foster species recovery, ecosystem restoration, and de-extinction, and these elements should be used in conjunction with machine learning and citizen science initiatives to mobilize as large a force as possible to counter current extinction trends.Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is ‘dominant’ over the other subgenome, often being more highly expressed. Here, we ‘replayed the evolutionary tape’ with six isogenic resynthesised Brassica napus allopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation. We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and an in silico hybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for the Brassica oleracea subgenome biased pairs, but no enrichment was identified for Brassica rapa subgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations.