YOUR CART
- No products in the cart.
Subtotal:
$0.00
BEST SELLING PRODUCTS
McCormack Wichmann posted an update 3 days, 8 hours ago
We found the ANN reduces to a linear relationship if a suitable subset of important features are identified prior to training, and that the prediction can be improved by classifying the nanoparticles into kinetically limited and thermodynamically limited subsets based prior to training the ANN corrections. The results demonstrate the potential for machine learning to enhance classical molecular dynamics simulations without adding significant computational complexity, and provides methodology that could be used to predict other electronic properties which cannot be calculated solely using classical simulations.Ion bombardment (IB) is a promising nanofabrication technique for producing nanoripples. A critical issue that restricts the application of IB is the limited quality of IB-induced nanoripples. Photoresist (PR) and antireflection coating (ARC) are of technological relevance for lithographic exposure processes. Moreover, to improve the quality of IB-induced self-organized nanoripples, in this study, a PR/ARC bilayer was bombarded at an incidence angle of 50°. The surface normalized defect density and power spectral density, obtained via scanning atomic force microscopy, indicate the superiority of the PR/ARC bilayer nanoripples over those of single PR or ARC layers. The growth mechanism of the improved nanoripples, deciphered via the temporal evolution of the morphology, involves the following processes (i) formation of a well-grown IB-induced nanoripple prepattern on the PR, (ii) transfer of nanoripples from the PR to the ARC, forming an initial ARC nanoripple morphology for subsequent IB, and (iii) conversion of the initial nonuniform ARC nanoripples into uniform nanoripples. In this unique method, the angle of ion-incidence should be chosen so that ripples form on both PR and ARC films. Overall, this method facilitates nanoripple improvement, including prepattern fabrication for guiding nanoripple growth and sustainable nanoripple development via a single IB. Thus, the unique method presented in this study can aid in advancing academic research and also has potential applications in the field of IB-induced nanoripples.A non-bosonic technique, based on the drone-fermion perturbation method and a high-density expansion, is employed to study the spin-wave (SW) scattering processes in a ferromagnetic thin film with exchange and dipole-dipole interactions. Specifically, the diagrammatic contributions to the spin-spin Green’s functions are evaluated within a 1/zperturbation expansion, wherezis the number of spins interacting with any given spin. The results are used to calculate the SW damping at temperatures below the Curie temperatureTC. It is found that, apart from the usual contributions due to three-magnon and four-magnon processes in the film, which are dominant at relatively low temperatures (consistent with boson expansion methods), there is an additional mechanism that becomes important for temperatures above about12TCThis is spin disorder damping, previously studied in bulk magnetic materials; it occurs when a spin wave is scattered by the instantaneous disorder produced when a longitudinal spin component undergoes a large thermal fluctuation. Numerical estimates are presented for thin films of Permalloy and EuO.Objective. With the development of clinical applications of motor imagery-based brain-computer interfaces (MI-BCIs), a single-channel MI-BCI system that can be easily assembled is an attractive goal. However, due to the low quality of the spectral power features in the traditional MI-BCI paradigm, the recognition performance of current single-channel systems is far lower than that of multi-channel systems, impeding their use in clinical applications.Approach.In this study, the subjects’ right and left hands were stimulated simultaneously at different frequencies to induce steady-state somatosensory evoked potentials (SSSEP). Selleck VTX-27 Subjects then performed motor imagery (MI) tasks. A new electroencephalography (EEG) index, inter-stimulus phase coherence (ISPC), was built to measure phase desynchronization of SSSEP caused by MI. Then, ISPC is introduced as a feature into left-hand and right-hand MI recognition.Main results.ISPC analysis found that left-handed MI can cause a significant decrease in phase synchronization in contralateral sensorimotor SSSEP, while right-handed MI has little effect on it, and vice versa. Combining ISPC features with traditional spectral power features, the single-channel left-hand versus right-hand MI recognition accuracy reaches 81.0%, which is much higher than that observed with traditional MI paradigms (about 60%).Significance.This work shows that the hybrid MI-SSSEP paradigm can provide more sensitive EEG features to decode motor intentions, demonstrating its potential for clinical applications.Bone reconstruction in the oral and maxillofacial region presents particular challenges related to the development of biomaterials with osteoinductive properties and suitable physical characteristics for their surgical use in irregular bony defects. In this work, the preparation and bioactivity of chitosan-gelatin (ChG) hydrogel beads loaded with either bioactive glass nanoparticles (nBG) or mesoporous bioactive glass nanospheres (nMBG) were studied.In vitrotesting of the bionanocomposite beads was carried out in simulated body fluid, and through viability and osteogenic differentiation assays using dental pulp stem cells (DPSCs).In vivobone regenerative properties of the biomaterials were assessed using a rat femoral defect model and compared with a traditional maxillary allograft (Puros®). ChG hydrogel beads containing homogeneously distributed BG nanoparticles promoted rapid bone-like apatite mineralization and induced the osteogenic differentiation of DPSCsin vitro. The bionanocomposite beads loaded with either nBG or nMBG also produced a greater bone tissue formationin vivoas compared to Puros® after 8 weeks of implantation. The osteoinductivity capacity of the bionanocomposite hydrogel beads coupled with their physical properties make them promissory for the reconstruction of irregular and less accessible maxillary bone defects.